LT I
~mk FlE | v A s prEdilp
ERIEETET]

TXIENELE e I [y}
ri% ad el mm -.__.ﬂl-.__..-.ﬂﬁ.1 .

. [N W TN E R R .
. a1k ks g

e m.....-.._p.r-.“.

Ad ptp oy

o .

i

ALAE

.

e it

LR

it B L)
|._.-.-_-__.._!_. -n.-.hr
&= Fam .__._..ul.
[AN R]]

= -..__.r.ﬂ..."..r

R

T TE r—— L ——————

" LTer o omam

v == ETETA e BT .

" g L Em L aaw § nomar

e T Lt

am. -

R,

NP |

f——— e — —_—— o, —

—_—_—— e

—— T —am

ek

-——

L -

e e—— ek

-——— _—a__-_l

—_—
e oA

- ————— i —

guy

i
J

—_—— e — -

J

——————— e

-1

onal

* ¥
.

e op

Cars and

L)
r

A enori

o

E

enl Jgescibes the Foundarien

s Jocurm

Thi

Ce Aoutine Fl1rmvare

d

bJevice Seri

128X Cardéd Documnmentation

CONTENTS

ntroduction
Specifications

Programming the 128X Card

Introduction

The Foundation 128K card provides 128K bvtes of high-speed
random-access memorv for the Texas Instruments 99/4A computer. This
memory 1s addressed by an assembly language program as four banks of
32K bytes each, with inter-bank swlitching performed using
Communications Register Unit instructions. Alternativelyv, with the-
optional Device Service Routine firmware, the upper three banks of
memory are avallable for use by an amplication program as if thevy
were either a single file, "MEMGG", or as if thev were three files
named "MEM9G6AY™, "MEMIEB", and "MIMOGCY. i1 thls mode of operation,
the upper banks of memorv can be used <o greatly expand the
data-handling capabilities of the 93/4A while using the lowest bank
to store either programs or data.

Specifications

Amount of Memorv 131,072 bvtes

Organization ¢ banks of 32X3 each mappred as >2000 to

>3FFF and >A000 to >FTFEFE
Memory Technology 4164 64Kx1 dynamic RAM
Memory Speed 200 nsec. at chip level.
} full bus speed at bus level

Support Circuits series 7400 Jow power Schottkv TTI logic
- and TMS4500A VLSI memorv controller

Software P2M96 Tile emulation with DSR obntion

Page 1

128K Card Documentation

rrogramming the 128X Card

Using the 128K Card with the DSR Ootion

Most users of the 128K card will find that its value is greatlv
increased when it is coupled with the firmware provided by the DSR
option. Using the DSR option, the memorv abbears to the user almost
like two different devices. One of them is cesigned to be used as
32KB of "normal" memory; that is, both programs and data are loaded
into it and programs treat it pretty much as they would memory fron

any manufacturer. The other pseudo-device is called MEMOG6, and it is
the main subject of this section. |

MEM96 1s provided as a wav of circumventing some verv basic .
limitations that are built into the TI 99/4 computer family. The TI
99/4 computers are only capable of addressing 64KB of memory. When TI
designed the machines, thevy carefully laid out what the reguirement
for memory would be and allocated all of the svace that was
avallable. Nevertheless, some people (including vou) either need nore
memorv already or can see that thev will in the not-too-distant
future.

What Foundation has done is to provide "firmware" (more on this
later) That allows 128XB of memorv to appear to a program as if it is
ooth "normal” memory and a groud of files that are available Just as
if they were files on some other device such as a disk drive.
Naturally, since the "files" are reallv in verv nigh-spveed memorv,
access to them is much faster than it would be to a file on a disk.
Fow much faster? This varies depending on exactly what vou are doing,
put it ranges from being a few hundred to a few thousand times
faster. This means that some jobs that would take an entire afternoon
on a disk-based system (for example, sorting a large file of names
and addresses), can complete in a few minutes executing in MEM9EG.

What exactly is MEM96 and now do yvou go about using it? To start
with, MEM96 is a file that vou access juit as vou would anv other
file, That is, you open it, read or write *o it, and close it when
vou are finished.

128X Card Docuyuaen*tation

e main goal of providing MFM96 was to make additional storage
capanility available to Programs. The model chosen was that of a
Tlzed-length random-access file in uvdate mode. If ovened in other
modes, MEMOGS may or mav not return an error concition, but results
are unpredictable. Records mav be any size from 4 to 255 bvtes, and
may be either "displav" or "internai" format. No notification of an
end-of-£file condition Is given, dut if a program attempts to access
record numbers that are too large, a DSR error code will be returned.
It thus becomes Iimportant to calculate the largest record that will
fit in a file somewhere toward the beginning of your program, and to
check that the record nunmber vou specify is in-bounds before each
access.

This paragraph is going to tell vou how to calculate the maximum
record number. It leads up to a simple formula that vou can just plug
in at the beginning of a program, so vou can skiv it for now if vou
want to. In order to calculate the maximum record number, vou should
think of memorv as consisting of 38X2R blocks. The MEMIE software and
other follow-on products from Foundation use the highest 8KB block of
memory for temporary storage, so MEMIYE actually has 88X3 available
for file storage. (You sta=-t with 123K8; "normal" memorv takes up
32KB, and the MFMO6 software takes up 8KB as discussed.) This works
out to eleven 8KB blocks. When You open MEIM96 as a file, vou specifv
a record size., If that record size doesn't divide evenlv intoc 8192,
anything left over is not used for storage. To calculate the maximun
record number, just figure out how many records will £it evenly into
8192 bytes and +then multiply that number bv eleven. That is,
somewhere toward the deginning of a program, insert the statement:

30 MAXREC=11*INT{8192/REGSIZE)

where vou have previouslv defined RECS to be the record size and
1

a
your OPEN statement looks something

7

D N
i)

100 OPEN #1:"MEM96", FIX=D RECSIZE, INTERNAL

Following this, vou should check before eacn read or write to M=..98
that the record pumber is less than MAXNEEC. Tor e

200 IF RECNUM>MAXREC THEN 1000
INDUT #1: I, AS -

1000 REM ERROR - RECNUM TOO LARCF

Page 3

128X Card Documentation

Evervithing so far has been tallk
banks of memorv as one large ps
would be more convenient to con
tnhat, for exanple, vou can have &i nt record sizes for different
purposes. To accomodate this, there are two different wavs that vou
can treat the upper three banks, One of them is what we have been
discussing so far, that is, to treat all three-banks as one large
file called MEM96. The other approach is to treat them as three
smaller files called MEM9BA, MEMO63, and MEM9sC, respectiveliv. MEMOGA
and MEM96B are each 32X3, while MIM9GC is 24KB. Obviously, if vou are
using MEM96A,-3, and -C, vou should not use MEMSE or vice versa -
otherwise you could find vourself accidentally overlaving a record.

iie called MEM9G. Often, it
it as a few smaller files so
ra

s one other pseudo-file vou should know about. It is called
, &nd 1t is Important that vou call it at the beginning of
ogram. It can be called using the following sequence:

10 OPEN #1: "MEMINIT", FIXED 10
20 CLOSE #1

MeMINIT initializes a "first-time flag" for the MEMYE sortware, If it
is not set, the screen may vanish or Stranye graphics may appear when
vou try to run vour progranm. You will be tempted to ignore MEMINIT
because nine times out of ten vou can get awav with 1t. However, it
im and the best
practice iIs to just make it a habit which vVOou o automat

The easiest wav to i1llustrate the workings of MTMSE is with an
exXample. Here is a sample program that opens MeEMS6, performs sonme
reads and writes to it, and then closes it

i28%X Card Documentation

Background Technical Information The 128X card behaves like "normal®
memory In that each ¢f its four banks is mapped Intc four segments
of 8X bvtes each. These segments are located at hexw adadresses >2000
to >3FFF (low segment) and >AQ000 to >FFFF (high segments). Thus, to a
user application program, the existence of the additional three banks
is ordinarily invisible. When an application programn is ready to

switch from one bank to another, it sets the appropriate CRU bits
according to the following table:

CRU Address Bank Number
>1T02 >1E504
0 0 0
1 O 1
C 1 2
1 1 3

That is, the binary equivalent of CRU bits 1 and 2 offset from CRU
address >1ECO selects the bank number. The following brief »rogram
segment Illustrates this:

LI R12,>1E00 SELZCT CRU BASE ADDRESS
S30 1 SET CRU BIT >1EQ2
SBZ 1 LEAR CRU BIT >1E02

e above example would select bank 1. To sxecuyte properly, this code
segmnent WD’LG neecd to appear in an address space outside of the 22%
of expansion memorv. For all practical purpoeses, this means that the
bank-switching code needs to execute in a 77T Mini-Memorv Module in
the 4K of RAM located between >7000 and >7FFF. It is also possible to
write a program that loads bank switching instructions into the CPU
PAD area from >38300 to >83FF, but this means a complex routine to
save and restore the ccntents of PAD before and after using it.

On power-up and whenever the console issues a resget signal to the
eXpansion box (e.g. whenever a command cartridge is inserted or
removed), the 128K memory resets itself to bank 0. Other than that,
no power-up 1lnitialization routines are initiated bv the 128X device
service routine. However,it should be noted that wher the console is
powered down, the noise on the ribhon cable to the expansion box will

usually corrupt the contents of some memory liocations.

Page 6

20

110

120

130
140
150

170
180
190
200
2190
220
230
240
250

260
270

280
2%0
300
*10

M
330
340
350
360
370
380
390
400
410
420
430
4490

A sample run of

REM MEMDEMO

REM THIS SHORT PROGRAM DEMONSTRATES HOW MEM%$6 CAN BE USED TO
WRITE AND READ RELATIVE RECORDS

REM THE PROGRAM STARTS BY TYPING "OUTPUT 2"

REM IF YOU TYPE "Y" (FOR YES), IT WILL PROMPT YOU TO ENTER
RECORDS UNTIL YOU GIVE IT A RECORD NUMBER

REM THAT IS5 LESS THAN ZERO. IF YOU TYPE "N, IT WILL A5K YOU
TO ENTER RECORD NUMBERS AND THEN WILL PRINT

REM THE RECORD STORED AT EACH RECORD NUMBER.

OPEN #1:"MEMINIT" ,FIXED 10

CLOSE #1

REM INITIALIZE MEM96 SOFTWARE

RECSIZE=64
MAXREC=4*INT(8192/RECS1ZE)
REM WOULD BE 4*THIS EXPRESSION FOR MEM96B OR 3% IT FOR MEM96C

PRINT "QUTPUT",

INPUT SWITCH?®

IF SWITCHS="Y" THEN 280
I¥ SWITCH$="N" THEN 280
€0T0 230

OPEN #1:"MEM96A” ,FIXED RECSIZE, INTERNAL,RELATIVE
PRINT “RECORD NUMBER"

INPUT RECNUM

I¥ RECNUM{(1 THEN 430

IF RECNUM{MAXREC THEN 350

PRINT "RECORD NUMBER TO0O LARGE"
GOTO 290

IF SWITCHS$="Y" THEN 3990

INPUT #1,REC RECNUM:AS$

PRINT As$

GOTO 290

PRINT "TEXT ',

INPUT Al

PRINT #1,REC RECNUM:AS

GOTO 290

CLOSE #1

END

this program is shown on the next page.

Here is a sample run of the program from the pPrevious page:

RUN

QUTPUT? Y
RECORD NUMBER
? 1

TEAT ? THIS SHOULD GO0 IN RECORD ONE
REGORD NUMBER

? 3

TEXT. ? HERE 15 DATA FOR RECORD 3
RECORD NUMBER

? 100

TEXT ? ANOTHER RECORD TO BE STORED
RECORD NUMBER

? 1000

RECORD NUMBER T0O LARGE

RECORD NUMBER

7?7 ~1

x DONE x=x
>RUN

OUTPUT? N
RECCRD NUMBER
? 1

THIS SHOULD GO IN RECORD ONE
RECORD NUMBER
? 100

ANOTHER RECORD TO BE STORED
RECORD NUMBER

? -1

X% DONE XX

)

FOUNDATION COMPUTING

Disk File Emulator

Table of Contents

1 Contents

2 Qverview
2.1 Organization of Document
2.2 Disk Emulator Functions
2.3 Getting Started

3 Loading and Saving Basic Programs
3.1 Loading and Saving from a Disk File
3.2 Loading and Saving from DSKX
3.3 Chaining Programs in Extended Basic
3.4 Warning About Size Constraints

4 Memory Manager Module
4.1 Introduction
4.2 “MMM” - Yet Another Device
4.3 Convenient Places to Access MMM

5 Using Sequential Files
5.1 Tl Writer
5.2 Editor/Assembler
5.3 Terminal Emulator |}
5.4 Multipian

6 Programming with Sequential Files
6.1 OPEN
6.2 INPUT
6.3 PRINT -
6.4 CLOSE
6.9 RESTORE
6.6 EOF
6.7 Delete

7 Summary of all pseudo-devices
8 Error Messages

9 Program License Agreement

Program License Agreement

YOU SHOULD READ CAREFULLY THE TERMS AND CONDITIONS SET FORTH IN THE PROGRAM LICENSE

AGREEMENT . POSSESSION OF THIS PRODUCT INDICATES YOUR ACCEPTANCE OF THESE TERMS
AND CONDITIONS.,

Disk File Emulator

“Overview
Organization of Document
Every “how-t0” manual has to make some choices as to how information ought to be presented.
This one is aimed at people that have had their computer for a while, that have just received the
disk-file emuiator firmware for the 128K card, and that are trying to figure out how to use it. It
should be read in a comfortable chair not too far from your computer, because a lot of the things
that it taiks about will be clearer if you can just try them out on the machine. The easy things
are covered first, and all the details of how you write programs to use the disk emuiator are
pushed toward the back.

Disk Emulator Functions

Just what does the disk file emulator do? The easiest way to approach this is by relating it to
something you are already familiar with, the standard “MEMS6"” software that is built into every
128K card. MEM96 provided one function for your computer: it allowed you to treat the extra
three banks of memory as files of relative records that programs couid write to or read from. The
disk file emuiator provides three new functions: (1) now you can use the upper three banks of
memaory to save or load programs, {2) you can treat them as sequential files, and (3) you can in-
teract with a built-in program to keep track of memory files.

It does this by providing a new pseudo-device called “DSKX". DSKX is like MEM96 in that it pro-
vides three files, each corresponding to one bank of memory. It is more general in that these files
can be given any file-name; for example, you could use “DSKX.MYFILE” to refer to memory bank
2. Like MEMGE, files in DSKX do not interfere with the use of bank 0 “regular” memory.

The files in DSKX correspond very closely to files on a Tl disk, so that application programs like
Muitiplan or TI-Writer can send their output into memory files. Also, for many application pro-
grams including most of Tl's Solid State Software, you can save and load data from DSKX. Thus,
for example, you can save word processing files into DSKX and reload them more guickly than
you could from disk. Also, you can store source text that you have created with the
Ecitor/Assembler into a DSKX file and assemble it from there. Section 5 discussas ways to do
this.

Getting Started

Just a brief word about installing or reinstalling the 128K Card . .. do remember to power down
the expansion box and wait a full two minutes before inserting any expansion module. You really
can damage modules if you hurry too much.

From here on, the assumption will be that you've installed your 128k card and that your computer
IS available to try out examples. Here’s a quick one: turn on your Expansion Box then your 99/4A
console and press 1 to go into Basic. Type DELETE “MEMINIT”. The screen should then, without
complaining at all, display a Basic prompt. If it succeeds, the odds are that your 128K card
survived shipping and everything is working. If it didn't, you either typed “MEMINIT” in small let-
ters or you should call Foundation about a possible hardware problem. What you just did was in-
itialize the 128k card. For now, don't worry about what this was supposed to prove: it will be ex-
plained later. -

Loading and Saving Basic Fograms

Loading and Saving from a Disk File

One of the first things that people learn to use their disks for is loading and saving programs.
Let's relate DSKX to a disk by first recalling how you would save a program to a disk file. First,
go Into Console Basic. Here is a sample session that will save and reload a short program:

Disk File Emulator

Chaining Programs in Extended Basic

At this point, you should be in Extended Basic. Type “OLD DSKX.TEST” and then list the file you have in
memaory. It should be there, intact. The point that is being illustrated is that DSKX is a handy place to put
data when you are switching from one application to another . .. in this case, you were switching from
Basic to Extended Basic. Another useful case is printing Multiplan output into a file that can be edited Dy
TI-Writer, but we'll get to this later.

Extended Basic offers a statement that makes it possible to spiit one large program into several smaller
ones —the "RUN" statement. Combined with the fast load from DSKX, this is a very powerful capability.
Here is how you use it: (again, this assumes that our short test program is still in main memaory)

>LIST
10 FORI=1T0 3
20 PRINT |
30 NEXT |
40 STOP
>5 PRINT “THIS WAS LOADED FROM DSKX”
>SAVE “DSKX.TEST”
>40 RUN “DSKX.TEST”
> RUN
THIS WAS LOADED FROM DSKX

G Ay -

THIS WAS LOADED FROM DSKX
1
2
3

* READY *
>

What you just did was write a program that automatically ran a second program. The first group of
messages above was displayed by the program in memory. When it got to line 40, it loaded and ran
DSKX.TEST, which printed out the second group of messages. You can use the RUN statement to build up
complicated systems of programs that interact with one another. One warning is that Extended Basic takes

up time initializing a program when it is run, so for long programs you will not get the near instantaneous
response that you just saw.

Warning About Size Constraints

One restriction needs to be mentioned. The three extra banks of memory provided by the 128k card offer
32K, 32K, and 24K of memory, respectively. (The upper 8K of the last bank are used by the disk emulator
software). An Extended Basic program can grow to more than 32K of combined stack and program space,

SO you may come across a program that cannot be stored in DSKX. Please send us a copy if you do; none
of the test programs that we put together ran into any problems.

Memory Manager Module

Introduction

| _Disk File Emulator

. The line across the bottom of the screen shows memory management commands that are avaijlable.
Delete” will delete a file. Try it now. Type “D” and when the computer asks you for a file number, type “3”".
he directory will immediately change to show that file 3 has been deleted. Now try typing “R” for
“Rename”. Select file 2 and press the <ENTER> key. In response to “New Name?”, type some legal file

name of less than eleven characters, for example FILE2<ENTER>. The directory entry for file 2 should
change to match the new name.

The iast command, “Init”, will delete all three files and re-initialize DSKX. Try typing “I”. The computer will
ask you “Really?”, and if your reply is a Y for Yes, it will delete all three files just as if you had typed
“DELETE MEMINIT” from Basic. Go ahead and delete them: we will have no further need of this test
prograrm.

Finally, to exit from MMM, hoid down the <FCTN> key and the 9 key at the same time. Some of the
plastic strips that come with software packages label this key combination as “ESCAPE”, which is what

you want to do. Incidentally, if you want to escape in the middle of a command, just type <FCTN> 9
before you hit <ENTER>.

Lastly, notice that when you return to Basic the screen is exactly as you left it before you entered MMM. |
you yere in the middle of some complicated display, this can be a handy thing.

Convenient Places to Access MMM

It's easy to forget what you had previously stored in DSKX, so MMM is a very convenient too! to have
available. You'll be giad to discover that you can access MMM from within programs like Ti-Writer and the
Editor/Assembler. Any time that a program asks you for a file name, you can usually type “MMM” or

_ "MMM.” and take a look at the contents of DSKX, That is, you're not limited to accessing MMM by typing
DELETE “MMM?” from Basic. Any /O operation except a CLOSE will transfer control to MMM. In many pro-

grams, the most convenient way to get into MMM is by pretending that you want to do a printout to MMM
instead of to the RS232 interface.

The main restriction on doing this is that MMM formats its dispfay for a thirty-two character screen. If you

run MMM from a program that sets up the screen for forty characters (T Writer, for example), the MMM
display will be hard to read.

Using Sequential Files
Or, some ways that standard programs can use sequential files.

Tt Writer

Tl Writer is a well-behaved program in that it lets you specify a device name as part of a
filename. This means that you can load and save TI-Writer files to DSKX. All you have to do is
specify “DSKX.fidlename” instead of “DSK1.filename” on the command line. For example, there is
a document named “FORMATDOC" on the master diskette that TI Writer is distributed with. Load
this file into memory by typing “LF” on the TI-Writer command line and specifying “DSK1.FOR-
MATDOC” when you get the “LOAD FILE, enter filename:” prompt. Now save it into DSKX by do-
ing a command of “SF”. TI-Writer will prompt you with “SAVE FILE, enter filename:”. At this point,
all you need to do is type “DSKX.FORMATDOC".

The other way that you can make use use of DSKX is by printing to it. This can be done either
from the Text Editor or the Text Formatter. Along these lines, you might try printing to device
"MMM” to see the directory. Though the directory is visible, screen formatting is incorrect
because TI-Writer uses 40 columns rather than the 32 that MMM requires.

Disk File Emulator

In order to use any file, whether it is on diskette or on the 128K card, you need to do three things:

1) “open” it, that is, tell the computer where the file is located, what kind of file it is, etc.
2) “input” or “print” information to it, and
3) “close” if, that is, tell the computer that you are through with using it.

There are statements in Tl Basic and Extended Basic that do each of these things.

OPEN

Before using a data file stored on the 128K card, you need to describe the characteristics of the file to the
program. The OPEN statement for the 128K card has the following general form:

OPEN #tile-number:“device-name” {,file-organization] [/file- type] [,open-mode] [,record-type]

Foreexample,if yt:iu intend to read and write thirty character records to a relative file named DSKX.MYFILE,
a file OPEN statement might look like this:

100 OPEN #1:"DSKX.MYFILE"”, RELATIVE, DISPLAY, UPDATE, FIXED 30

DSKX provides three files that correspond to the upper three banks of memory on the Foundation 128K
card. When a file is opened on DSKX, the lowest available file slot is used. For example, starting with a
clean slate, if you opened three files they would be placed in banks 1,2, and 3 in that order. |f you then
deleted the files in banks 1 and 3, the next file created would be placed in bank 1. The only difference bet-

ween the files that are created in different banks is that banks 1 and 2 provide up to 32Kb of storage while
bank 3 provides up to 24Kb.

file-number - The file-number (1 through 255) is assigned to a file by the OPEN statement. It is a number
that Basic uses to keep track of open files, and it will be used in all later statements that refer to this file,
e.g. INPUT, PRINT, and CLOSE statements. You can assign any file number that is convenient for you.
Most programs number the first file as 1, the second as 2, etc.

device-name - Most of the cards that plug into the Tl Peripheral Expansion Box have one or more “device
names” that software uses to refer to them. For example, if you have a disk, you know that you refer to
your first disk drive as “DSK1”. Similarly, you use the device name “DSKX"” to refer to the disk-file emulator
psuedo-device. If you are using DSKK in a program that also uses the "“"MEM96" pseudo-device provided
with all 128K cards, you should be aware that these files will overlay each other. That is, DSKX will place a
file in bank 1, 2, or 3 of the 128K card. MEMO96A directly corresponds to bank 1, so any changes made to
MEM3I6A will also change the contents of the first DSKX file. MEMS6A,-B, AND -C can coexist with DSKX
as long as this overlap is taken into account. It is also possibie to refer to device MEM96 without a suffix
to create one large file that spans all three memory banks, This large file is restricted to being a file of

fixed length relative records, and it is easy {o get into trouble by using both MEMS6 and DSKX.xxx in the
same program.

file-organization - RELATIVE: Records in a relative file can be read in any order. This is in contrast to a se-
quential file, where records can only be read or written one after the other. This has two implications. First,
when we get to the “INPUT” and “PRINT” statemens, you will see that for relative files you need to tell the
computer which record it is that you want to access. Second, all the records in a relative file need to be
the same size. You must decide what size to use in advance, and tell the machine what your decision is.
(See FIXED, below.) Relative files on the 128k card are pre-extended to their full length, since an entire
bank of memory is allocated for each file. SEQUENTIAL: For sequential files, the system software keeps
track of where you are in the file so that you do not need to specify a record number on reads or writes.
Sequential files are read back in the order that they were written. Files on DSKX or MEMS6A,-B, or -C may
be opened for sequential access. As noted above, pseudo-device MEMO6 (with no suffix) can only be open-
ed for RELATIVE access.

Disk File Emulator

Taking things one step at a time, first consider the INPUT statement. The INPUT statement has the follow-
ing: format: |

-INPUT #file-number [[REC record-number]: variable-list for a relative file, or
" INPUT #file-number: variable-list for a sequential file.

_. You always need to specify the file-number and #ariable-list, and may optionally specify a record-number
- for relative files.

file-number - The file-number is the number that was assigned to this file in the OPEN statement,
and the discussion from the OPEN statement applies here as well.

§

record-number - With relative files, you may tell the computer which record you want to retrieve.

The record number varies from 0 up to the largest record that will fit into 32Kb or 24Kb. If record-
number is left blank, the next sequential record will be read.

variable-list - The INPUT statement reads one record from a file in DSKX into the variables that
you specify as “variable-list”. These should correspond directly to the variabglist that you used
to write the record. That is , if you wrote out a number followed by a character string, variable-list
should consist of a numeric variable followed by a character string variable.

Suppose that you opened DSKX.F1 with the foliowing statement;
10 OPEN #1: “DSKX.F1”, RELATIVE, INTERNAL, UPDATE, FIXED 64
and then stored a list of customer names and telephone numbers, one name to each record. Then later in

the same program or in a different program, you could input the name and phone number stored in the
tenth record with the following line: 100 INPUT #1, REC 10: AS

- PRINT
The PRINT statement is used to write data into DSKX files. It has the following format:

PRINT #file-number, REC record-number: print-list for relative files, and

PRINT #file-number: print-list for sequential files.

You always need to specify the file:number and print-list, and may optionally 3peci'fy a record-number for
relative files. -

file-number - The file-number is the number that was assigned to this file in the OPEN statement
and the discussion from the OPEN statement applies here as well.

record-number - For relative files, you may tell the computer whnich record you want to store. The
record number varies from 0 up to the largest record that will fit into the current file. If record-
number is left blank, the next sequential record will be written.

print-list - The print-list is the list of variables that you want to place into DSKX.xxx . It consists

of a list of numeric or string expressions with items in the list sepa- rated by commas or
semicolons. '

For example:

PRINT #1, REC 110: .06*COST, “Sales Tax’

Disk File Emulator

DSKX Device providing three named files, each referred to as DSKX.filename. Files on
DSKX overlay MEMS6A, -B, and -C, and have the same capabilities.

MMM Memory Management Module. All /O operations to pseudo-device MMM start up a
program that can be used to interactively manage the contents of DSKX.

MEMINIT All 11O operations to MEMINIT delete al! files from DSKX and initialize internal
variables to a known starting point.

Error Messages

All error messages generated by an application program accessing DSKX come from bits being set in the
error field of the DSR flag/status byte. Basic and several other programs refer 1o these as “l/Q Errors”. The
following errors may be reported:

2 Bad Open Attribute. One or more OPEN options are illegal or do not match the stored file
characteristics.

3 lllegal Operation. Input/Output command not valid. Also used as a catchall for errors that do not
fall into some other category,

Out of Space. No space left on DSKX or out of directory entries.

End of File. Attempting to read past the end of a file.

a O A

Device error. Internal error in DSKX or directory corrupted by file operations.

~

Fiie error. Regquested file not found.

Program License Agreement

Foundation Computing, Licensor, provides this program, referred to hereunder as disk-file emulator soit-
ware or Licensed Program, and licenses its use. You assume responsibility for the selection of the program
to achieve your intended results, and for the installation, use, and results obtained from the program.

1. You may use the Licensed Program on a single machine at a time.

2. You recognize the proprietary nature of the Licensed Program and materials and agree to preserve
protect Foundation Computing’s interest herein.

3. Title - Title and Ownership to the Licensed Program resides in Foundation Computing.

4. Term - The License is effective until terminated. You may terminate the license at any time I
the Licensed Program and Materials together with all copies. It will also terminate if you fail t
with any term or condition of this agreement. You agree upon such termination to destroy tb
Program and Materials together with all copies in whatever form. Within thirty days after te
Licensee shall certify in writing that through its best efforts and to the best of its knowlec

part or in whole, of the terminated and/or discontinued Licensed Program and Material re
been destroyed.

5. The disk-file emulator software is being made available “as is”, without any warran’
pressed or implied, including, but not limited to the implied warranties of merchanta’
particular purpose. The entire risk as to the quality and performance of this softwa
the program prove defective, you assume the entire cost of all servicing, repair, or

6. Foundation does not warrant that the disk-file emulator software will meet your 1.
operation will be uninterrupted or error free.

